એક પાસાને ફેંકવામાં આવે છે. જો ઘટના $E$ એ પાસા પર મળતી સંખ્યા $3$ નો ગુણિત છે' અને ઘટના -$F$ ‘પાસા પર મળતી સંખ્યા યુગ્મ છે', તો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ છે કે નહિ તે નક્કી કરો.
We know that the sample space is $S=\{1,2,3,4,5,6\}$
Now $ \mathrm{E}=\{3,6\}, \mathrm{F}=\{2,4,6\}$ and $\mathrm{E} \cap \mathrm{F}=\{6\}$
Then $P(E)=\frac{2}{6}=\frac{1}{3}, P(F)=\frac{3}{6}=\frac{1}{2}$ and $P(E \cap F)=\frac{1}{6}$
Clearly $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) . \mathrm{P}(\mathrm{F})$
Hence $E $ and $F$ are independent events.
વિદ્યુત યંત્રના ભાગોનું જોડાણ બે ઉપરચનાઓ $A$ અને $B$ ધરાવે છે. અગાઉની ચકાસવાની કાર્યપ્રણાલી પરથી નીચેની સંભાવનાઓ જ્ઞાત છે તેમ ધારેલ છે :
$P(A$ નિષ્ફળ જાય) $= 0.2$
$P$ (ફક્ત $B$ નિષ્ફળ જાય) $= 0.15$
$P(A $ અને $B$ નિષ્ફળ જાય) $= 0.15$
નીચેની સંભાવનાઓ શોધો :
$P(A $ એકલી નિષ્ફળ જાય)
એક થેલામાં $4$ લાલ અને $3$ વાદળી દડા છે. બે દડા વારાફરતી લેવામાં આવે છે. જો બીજો દડો લઈએ તે પહેલા, પહેલો દડો મૂકવામાં આવે તો પહેલા બે દડા લાલ અને બીજા બે દડા વાદળી હોવાની સંભાવના કેટલી થાય ?
બે વિમાન $ I $ અને $ II$ એ ર્ટાગેટ પર બોમ્બ નાખવાના છે. વિમાન $ I$ અને $ II $ ની ર્ટાગેટ પર બોમ્બ લાગે તેની સંભાવના અનુક્રમે $0.3$ અને $0.2 $ છે. બીજુ વિમાન તોજ બોમ્બ ફેકંશે જો પહેલુ વિમાન ચુકી જશે, તો ર્ટાગેટને બીજા વિમાન વડે બોમ્બ લાગે તેની સંભાવના મેળવો.
એક પાસાઓ એ રીતે છે કે જેથી દરેક અયુગ્મ સંખ્યા આવવાની સંભાવના એ યુગ્મ આવવાની સંભાવના કરતા બમણી છે જો ઘટના $E$ એ એકવાર ફેંકવાથી મળતી સંખ્યા $4$ કે તેનાથી વધારે આવે તેની સંભાવના $P(E)$ મેળવો.
પેટી $A$ માં છ લાલ અને ચાર કાળા દડા છે અને પેટી $B$ માં ચાર લાલ અને છ કાળા દડા છે.જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $B$ માં મુકવામાં આવે છે.અને પછી એક દડો પેટી $B$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $A$ માં મુકવામાં આવે છે.હવે જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરતાં તે લાલ હેાય તેની સંભાવના મેળવો.